
 1

Proposed RPG Diagram Notation Changes

Revision 5

A gauge that tends to
increase the minimum of
another gauge as its own

value increases

A gauge that tends to increase
the maximum of another
gauge as its own value

increases

A gauge that tends to
decrease the minimum of
another gauge as its own

value increases

A gauge that tends to
decrease the maximum
of another gauge as its
own value increases

A gauge that tends to decrease the
minimum of all gauges in a set as its

own value increases

A gauge that tends to increase
the maximum of all gauges in a
set as its own value increases

A gauge that tends to increase
the values of gauges in a set as

its own value increases

A gauge that tends to
increase the value of

another gauge as its own
value increases

A gauge that tends to decrease
the maximum number of allowable
characteristics in a set as its own

value increases

A gauge that tends to increase
the minimum number of

allowable characteristics in a
set as its own value increases

A gauge that tends to increase
the number of characteristics in

a set as its own value
increases

Gauge Diagrams

If you want to distinguish the winning side from the losing side in a contest, fill in the
winning side of the contest icon.

Losing
Side

Success?

Winning
Side

An “Element of” symbol: can be used to identify a gauge as being an element of a
set. In this way, relationships can specify whether they apply to individual set
elements or to the set as a whole:

 2

Reinforcing
Loops

Balancing
Loops

Ambiguous Inverse
Relationship

Loops in Gauge Diagrams highlight a game’s reward systems and balancing mechanisms. Reinforcing Loops
have an even number of inverse relationships. Balancing Loops have an odd number of inverse
relationships. This isn’t an actual change to the technique. It is only an illustration of the concept.

Direct
Relationships

Inverse
Relationships

Relationship may decrease
target but not increase it.

Relationship may increase
target but not decrease it.

Relationship may increase or
decrease target

Ambiguous Direct
Relationship

Relationship may decrease
target but not increase it.

Relationship may increase
target but not decrease it. (This
kind of relationship is often
used to represent resources.)

Relationship may increase
or decrease target

It would sometimes be useful to more clearly specify the precise nature of a relationship. Some relationships
can increase, but not decrease the target. Some can decrease but not increase the target. Others can do both.
To allow more detail, adornments can be added to provide this information:

The triangles are placed on the lines so that you can read diagrams easily. Just remember these simple rules:

1) If the base (big end) of a triangle points toward the target, the relationship increases the target.
2) If the tip (little end) of a triangle points toward the target, the relationship decreases the target.

Note that this changes the definition slightly from the book’s definition of what a solid arrow and dashed
arrow mean. In the book, a solid arrow means that an increase in the originating gauge implies an increase
in the target gauge. A dashed arrow means that an increase in the originating gauge implies a decrease in the
target gauge. Nothing more is specified. Now, a solid arrow means that the originating and target gauges
change in the same direction (up or down) while a dashed arrow means that the originating and target gauges
change in the opposite direction. This redefinition does not actually change the diagrams in the book (at
least, I don’t think so), but allows for more clarity when needed.

 3

“Or” Gate “And” Gate

Sometimes, currency flow depends on a logical operation, such as “The attribute value goes up if the
roll succeeds and the player spends a token”. To model these kinds of operations, we borrow the “and”,
“or”, and “not” gates from digital circuit design. The output from these gates is the logical “or” or
“and” of the inputs. The “not” gate, represented by a small circle, transforms a “true” to a “false” or a
“false” to a “true”. In gauge diagrams, “false” is any value of 0 while “true” is any non-zero value. If
you need to assign a numerical value to the output of a gate, assume “true” is 1 and “false” is 0.

A

B A or B

A

B

C

A or B
or C

A

B

A

B

C

A and B
and C

A and B

A

B A or not B

A

B not (A or B)

A

B A and not B

A

B not (A and B)

At other times, it is useful to be able to specify that currency flow only occurs upon certain conditions.
For example, “If your attribute value falls to zero, the player with the most tokens must give you one
token.” To represent these kinds of currency flows, we borrow the transistor icon from electric circuit
diagrams. Our idealized transistor acts as a sort of switch that allows currency to flow only when some
controlling input value is “true”. So, the transistor is overlaid on top of an arrow and has another input
representing the control value:

Control Gauge
(interpreted as
“true” or “false”)

A B

A Direct Relationship
exists between A and B
only when the Control

Gauge is “true”

Control Gauge
(interpreted as
“true” or “false”)

A B

An Inverse Relationship
exists between A and B
only when the Control

Gauge is “true”

 4

Another Interface
supported by the
component

Component Name
<<component>>

UML Component Diagram Illustrating the Interfaces supported by a
component

Interface Name
 <<interface>>

Interface Properties

An Interface
supported by the
component

UML Component Diagram illustrating the properties of an
interface

Component Properties
(optional)

Interface1
 <<interface>>

Interface1 Properties

Interface2
 <<interface>>

Additional Properties
added by Interface2

UML Component Diagram Illustrating “is a kind of”
relationship

The arrow illustrates that Interface2 “is a kind of”
Interface1. So, it inherits all of Interface1’s properties.

To illustrate game aspects other than gauges and their relationships, other
diagramming techniques can be used. UML is particularly useful in this regard.

 5

Skill
 <<interface>>

Base: integer
Description: text
Prerequisites: text

Mage Spell
 <<interface>>

Stress Factor: integer
Affected Area: area
Casting Time: time span
Duration: time span
Range: distance

This illustrates that “Skill” and “Mage Spell” are both interfaces. The
arrow indicates that “Mage Spell” is a kind of “Skill”.

Since Mage Spell is a kind of Skill, it is not
strictly necessary to hang this second Skill
interface icon off of Lightning Bolt.
However, it is allowable if the diagrammer
feels it illustrates what he is trying to show
more clearly. Lightning Bolt Spell

<<component>>

Mage Spell

Skill

UML Component Diagram Example of two interfaces

Base: integer
Description: text
Prerequisites: text
Stress Factor: integer
Affected Area: area
Casting Time: time span
Duration: time span
Range: distance

UML Example of a concrete component

Also, since Lightning Bolt supports the Mage
Spell and Skill interfaces, it is not strictly
necessary to include all of the properties in the
Lightning Bolt diagram. Their inclusion is
implied. Again, it is allowable to include
them for clarity.

The “Mage Spell”
icon indicates that
“Lightning Bolt”
supports the Mage
Spell interface.

 6

A Module

UML Dependency Diagram

A Module that
depends on

another Module

The Grimoire of
Game Rules

(Core Rule Book)

Example UML Dependency Diagram
(Illustrating the dependencies between the various books of Legendary Quest)

The Lexicon of Lore
(Mage Spell Book)

The Manual of
Mythology

(Priest Spell Book)

The Tome of Terrors
(Monster Book)

Celtic Creatures and Nordic
Nightmares

(Monster Book)

Monsters of the
Mediterranean

(Monster Book)

The Handbook of Hazards
and House Rules

(Misc. Supplement)

Strengths: There are no circular dependencies. It is therefore possible to play the game with only
the Core Rule Book or a sub-set of the books. (The spell books, although not mandatory for play,
are needed by the monster books.) The Core Rule Book has the responsibility of defining all of the
interfaces used throughout the game. The supplements, then, merely implement concrete examples
of these interfaces.

Weaknesses: Moving a small section out of The Tome of Terrors into The Grimoire of Game Rules
would eliminate the dependencies on The Tome of Terrors entirely. In the next edition, I will do
this. (This small section is, in essence, the definition of the “Monster” interface.)

Observation: All of the monster books depend on the two spells books as well as the Core Rule
Book. This is because a decision was made to write up all specialized monster abilities as spells.
This was a conscious decision I made to increase re-use of rules at the expense of adding
dependencies between books. (This follows the “Modularity” design pattern.)

